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Technical Report RSC-34 

A PRACTICAL METHOD OF DETERMINING WATER CURRENT 

VELOCITIES AND DIFFUSION COEFFICIENTS IN 

COASTAL WATERS BY REMOTE SENSING TKHNIQUES 

by 

Wesley P. James 

INTRODUCTION 

Pcpulation and industrial centers along the 

coastal areas are generating large volumes of waste 

materials which present a threat to the environmental 

quality of the area. The environmental characteristics 

of the coastal area can be expected to generate a large 

population growth in the near future which will compound 

the pollution problems of the area. 

Restricted m ixing and circulation character- 

istics of the estuaries and nearshore waters lim it the 

natural capacity to handle concentrated waste loadings 

from  population centers. The major factors that deter- 

m ine the m ixing characteristics in the coastal waters 

are (1) wind, (2) tidal range, (3) topography, (4) fresh 

water inflow and (5) density gradients. The salinity or 

density gradients are functions of the fresh and salt 
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water inflows and the circulation within the estuary. 

Energy must be provided to break down these gradients 

to allow complete mixing. 

Diffusion coefficients and current velocities 

in the receiving waters are essenti.al to waste disposal 

studies . Mathematical models of the coastal area require 

this information to predict the fate of future waste 

loadings, Since the coastal waters cover large areas 

and the diffusion coef”’ cients an-i current velocities 

vary with both space and time, remote sensing provides 

. . a practical method of gathering tilis information. 

Field work begins by dropping dye markers 

from an aircraft at selected locations throughout the 

receiving waters. The movement and spread of thz re- 

sulting dye patc..cs are measured remotely by two flights 

over ?he area. The movement of the patch between flights 

gives t.he current velocity while the change in size of 

the patch is used .to determine diffusion cczfficients. 

While the procedures described herein utilize aerial 

photog;*aphy , the method can be adopted to automatic 

identification of dye patches and automatic processing 

with multjspectral scanning imagers (Elliason, 1971). 

By using the ratio of light returned in two bands, one 

band in the region of maximum absorption and the second 
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band in the region cf maximum re-emission of the dye, 

the dye patch can bc identified and computation com- 

pleted. 

DI FFUS IOS STUDIES 

Numerous investigators have employed solu- 

tions to the diffusion equations for the estimation of 

waste concentrations in a waste field. If the scale of 

the current ectdi~c is much smaller than t.he dimensions 

of the waste field, then the Fickian form of diffusion 

equation can be applied. The basic equation is: 

+ ;y wxw + $ fVzW)] + s 

where V is velocity, W is waste concentration, D is 

: 
edd;.- diffusivity, X, Y, and 3 are space coordinates and 

T represents time. The first three terms on the right 

are the diffsusion terms, the next three are convection 

terms and S represents the sources and sinks. 

Solutions to the equations have required vari- 

ous assunptions -such as steady state condition, no vertical 

,  

:  
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or longi tudinsl mixing and unidirectional transp0r.t 

velocity in the X direction. With these assumptions, 

the equation becomes : 

V aw= 
x ax 

b (DY s) + aW (2) 

where a is a first order decay constant and aW repre- 

sents a sink or loss in the system. 

Investigators such as Pearson (1955-1967) 

Brooks (1960) and otters have reported solutions to 

the diffusion equation for various conditions. Pearson 

points out that for a source with 1) steady unidirec- 

t ion al current, 2) uniform mixing of the waste ana 

3) continuous uniform flow from the source, solution 

to the diffusion equation i.s as follows : 

s = 
2.35 d/v 

OIL Q - 

where Sam is the minimum dilution along axis of wast,e 

plume at distance X from a pcint source; D is the 
Y 

assumed diffusivity in ft'/sec; X is the distance 

from source in feet; Vx is the average velocity of 

water mass in ft/sec; Q is the waste discharge, MGD 

and d is the assumed mixing depth in feet. 

(3) 

, . 
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Including the decay function for bacterial 

dicaway or disappearance, and expressing the waste con- 

centration in terms of coliform concentration, the 

abovo expression becomes: 

0.425 QC, 
MPN = (4) 

d/DZsTP exp (zXV,) 

. 
where MPN is the most probable number of organisms per 

ml on plume centerline at X; CO is the concentration of 

organisms in waste, MPN/ml; and a is the bacterial dieaway 

(decay) constant, set-'. 

Pearson (19f.7) further points out that: The 

above equations assume a constant eddy diffusivity; cor- 

respondingly, the value of Dy employed must be represen- 

tative of the overall or average scale of the diffusion 

phenomenon". 

Drooks has reported a solution to the diffusion 

equation with a variable coefficient of diffusivity. It 

4s assumed that the difiusivity coefficient, D 
Y' varies 

as the four-thirds power of the scale of the diffusion 

phenomenon. Dy G cr1413., where CL is a constant. Brooks ' 

equation for a line source is as follows: 

= Coeeat erf 3/Z 
3 

l/2 
cm 

-_ 
(1 + ZBX/(Sbj) '-1 (5) 
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'where: CO =' initial colifoim concentration 

‘rn = maximum coliform concentration at time, t 

.t = time of travel X/V, 

‘I\ = 1 2Dy/Vxb 

a = decay constant 

Dy. = eddy diffusivity at source (X = 0) 

b = initial width of sewage field 

Considering the foregoing solutions to the 

diffusion equation, the four characteristics of the 

rccciving waters that have a major effect on waste 

concentration arc the following: 

& v,, average current speed 
-. 

2. D Y' 
eddy diffusivity 

'k 
3. d, average mixing depth 

4. a, decay or dieaway constant o'f pollutant 

The Allen Hancock Foundation conducted an in- 

vestigation on the dilution and dispersion of a waste 

field in the sea (1964). In their study Rhodsmine B 

dye was introduced as 1.) slugs from a point source, 

2) a continuous plume from a point source and 3) a con- 

tinuous plume from a volume source. Dye concentration 

was measured with a Tamer fluorometer; The mathematical 

models used for analysjs of data were statis tical models 

based on Gaussian distribution. 'The basic three-dimen- 

sional model for the dye slug was 

‘e . 

..,_ _._- .,%A. 
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W(x, >, 2, t) = - M 

7Tai7 [Fx2 a 2 az2]1/2 
Y 

exp - 

1 

x2 + Y2 + z2 
2cl>(' 20 2 

Y 
2az2 

I 

(6) 

- 

where W is the average concentration of a point X, Y, Z, 

at time t, M is the amount of dye initially discharged 

from an instantaneous point source and zx2, ay2, 5-s' are 

the average values of the variances of the concentration 

distribution. 

Several of conclusions of the Allen Hancock 

investigation arc listed below. 

1. The rate of vertical diffusion can contribute 

significantly to the overall diffusion process 

at wind speeds greater than eight knots ar.d/Gr 

low water column stability. 

2. The rate of longitudinal and lateral diffusion 

appeared to be influenced by wind speed but not 

by water column stability. 

3. The "4/3 law" relating the lateral coefficient 

of eddy diffusion as a function of average eddy 

scale did not hold in the particular oceanic 

areas studied. 

. .‘,,._ .-. . ..~‘_. I ,,. . ~ ,. ., . ., ._ ., _. ii-.-.2 

‘1. 
I 



8 . 

Vertical mixing does occur in the waste’field 

as well as horizontal mixing. As indicated by Wiegel 

(1964), vertical mixing is difficult to study in the 

laboratory because of limitations of tank size. In 

these studies +-he wind drags the surface water to the 

down wind end of the tank producing a hydraulic head 

which causes a flow in the opposite direction. 

Laboratory studies have indicated that wind 

drag on the water surface produces very little mixing. 

lfowever, when wind generated waves appear, extremely 

rapid mixing occurs his wind waves are rotational in the 

generating area. Masch (196 1 j conducted a wave study 

in a wave tank and developed the following relationship 

for the coefficient of eddy diffusivity: 

DY = 0.0038 (Vs + Qw)~-’ (7) 

whcrc Vs is the surface current and Qw is the water 

particle orbit speed (Qw = If/T, 11 = significant wave 

height and T = average wave period). 

d 
. . . ._ ._. -. _ ., _,., .A., . . . . __.. . . . _- 1.., ,..I. . I .,_ ,. ..- ^. ._ c. . . . / 6 . ..L.r 
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D Y E  P A T C H  S T U D IE S  

T h e  th r e e  pictures. s h o w n  in  fig u r e  1  w e r e  

ta k e n  July 7 , 1 9 6 9  us ing  p a n c h r o m a tic film  typ e  8 4 0 i  

wi th a  W r a tte n  2 5 A  filte r . W h i le th is  is n o t th e  b e s t 

film - filte r  c o m b i n a tio n  fo r  observ ing  th e  d y e  p a tch , 

th e  c h a n g e  in  s h a p e  o f th e  d y e  p a tch  c a n  b e  s e e n . T h e  

d y e  was  d r o p p e d  a t 1 2 :1 9  a n d  th e  first p h o to  was  ta k e n  

a t 1 2 :2 5  f rom 3 0 0 0  ft a t wh ich  tim e  th e  size o f th e  d y e  

fie ld  was  1 6 0  ft by  4 0  ft. T h e  p h o to  in  fig u r e  lb  r ias 

t& k e n  a t 1 3 :1 3  f rom 4 0 0 0  ft. A fte r  5 4  m inutes f rom th e  

tim e  th e  d y e  was  d r o p p e d , th e  d y e  p a tch  h a d  g r o w n  to  

a p p r o x i m a tely 7 0  ft v:id e  a n d  a 1 1  overa l l  cu rved  l e n g th  

o f 1 0 0 0  ft. T h e  p h o to  in  fig u r e  lc was  ta k e n  a n  hol l r  

a n d  a  hal f  la ter  a t 1 4 :4 3  f rom 5 0 0 0  ft. T h e  d y e  fie ld  

a t th is  tim e  is 2 1 0 0  ft l o n g  a n d  1 3 0 0  ft w ide . 

T h e  e x a m p l e  g i ven  in  fig u r e  1  was  a n  ex t reme 

e x a m p l e  o f e l o n g a tio n , curvature  a n d  str iat ion o f a  d y e  

p a tch . T h e  w ind  was  5  to  1 2  k n o ts with a  swel l  h e i g h t 

o f 4  to  6  ft a n d  a  w a te r  cur rent  velocity o f 6 .4  ft/sec. 

M o s t d y e  p a tch e s  o b s e r v e d  h a v e  b e e n  e l o n g a te d  in  a  d i rec-  

tio n  near ly  para l le l  to  th a t o f th e  w a te r  flo w . S tr iat ions 

a n d  curvature  o f th e  d y e  p a tch  a r e  c o m m o n ; h o w e v e r , in  m o s t 

e x p e r i m e n ts th e  overa l l  s h a p e  o f th e  p a tch  resemb ies  a n  

el l ipse. 



a 
At 12:,' 5 from 3000 ft 

10 

b 
At 13:13 from 4000 Et 

At 14:43 from SOOU Et 

Figure 1. Aerial photographs of a dye patch on July 7, 1969. 
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The elongation of, the dye pat,11 in the direction 

of .flow suggests that dispersion due .to a vertical velocity 

gradient can be an important consideration. The upper 

layers of water are first influenced by a change in wind 

velocity or direction and vertical water current gradients 

arc formed. Wind waves and swell both have specific oricn- 

tation and may cause diffusion to occur at different rates 

ill a horizontal plane. 

The basic diffusion equation given as equation 1 

is rcduzcd to ;I tiio dimcnsicncil model. 

aw - D a 2 w +D a2w t- aW 
at Yay2 XSi? 

A sol.ution is 

W(x, y;t) = WInax exp - 
[ 

x2+ Y" 
2ax* 20 2 

Y 1 

(8) 

(9) 

whcrc the coordinate axis is assumed to move with the 

llyc? patch. Tn the equation W represents tho dye conccn- 

tration, X ant! Y are the coordinates from the centroid 

of the dye patch parallel and transverse to the direction 

of flow, D, and Dy are the longitudinal and lateral dif: 

fusion coefficients, a is a first order decay coefficient 

(which includes the loss to the lower layers due to verti- 

cal. diffusion) and,ax* and G * represent the variances in Y 

,A 

1’ 



12 

the X and \' directions. The relationship between the 

change in variance and the diffusion coefficient is 

given by 

1 Au2 D=-- 
2 A'1 (10) 

The diffusion coefficicz+ is equal to one half the change 

in variance (A(r*j divided by the time interval (At). 

Ry dividing cqllntion 9 by the maximum concen- 

tration at the centrojd (Wmax ), taking the log of each 

side and multiplying by 2, the equation becomes 

x2 + Y2 
0 2 

a=21n ‘!Y!jE?i. 
X X [ 1 

Letting 

a2 = 2ax2 In 
w [ 1 ma;: -- 

IV 

W 
‘o* max = 2ay2 In - [ I 1:' 

equation 11 rcc!uccs to that of an ellipse. 

x2 Y2 1 -- + -. = 
a2 b2 

(11) 

(121 

(13) 

(14) 

\ 
1 . . . . kl 

-.. 
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where a and b are the major and minor semi axis of an 

ellipse fitted to a line of equal concentration about 

the dye patch. Since the edge of the dye patch generally 

formed an irregularly shaped boundary and is characterized 

by relatively steep concentration gradient, the visible 

boundary of the patch was assumed to have a concentration 

of w 
max” ’ 

With this assumption equations 12 and 13 

reduce to 

uxz = 0.72ae2 (15) 

aY2 

= 0.72be2 (16) 

13~ computing the variances in both the longitudinal and 

transverse direction from two flights over the area, the 

diffusion coefficients can be determined from eqllation 10. 

Since the dye patches seldom form a perfect 

ellipse, the major and minor semi axes of the patch can 

not be measured directly. In the computations, the 

irregular-shaped dye patch is replaced with an equiva- 

lent ellipse that has the same horizontal area and the 

same ratio of transverse to longitudinal variances as 

the real natch. The photographic coordinates of both 

the control points and the outlines of 'Lne dye patches 

are measured with an x-y coordinatograph. The control 

! i 
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points 'are -necessary for photographic orientation as 

described in the following' section. 

i’ 

PI-IOTOCRAPI~~ ORIENTATION 

photographic orientation is accomplished by 

a non-linear sol.ution to the collinearity condition 

equations (Keller and Tewinkel, 1966). Corrections 

arc generally not required for atmospheric refraction, 

earth ci1rvatllre; film shrinkage or lens distortion. 

The relationship between photo coordinates and ground 

coordinates is 

"p - xo 

1, yp - yo 

-f 

X 
P - yc 

= K[RM] Yp - Y, I 2 
P - zc 

(17) 

where x P and y P are photo coordinates of image point p, 

f is the camera focal length, x0 and y, are photo co- 

ordinates of the principal point, K is a scale factor, 

the x, Y, and Z subscripted p and c reier to ground r 
: 

coordinates of the object and camera station respectively, 

and.RM is the rotational matrix. ,The matrix is defined as 4' 
i 

i 

,.1 : ._ I . . I. _  .I ..- _  ,:_ 

i 
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ml1 ml2 ml3 
[ml = m21 m22 m23 

m31 m32 m33 

where: ml1 = COS(I$) cos (K,) 

(18) 

J 

ml2 = cos(WO) sin(K,) + sin(WO) sin(Q) cos(K,) 
, 

ml3 = sin(WO) sin(K,) - cos(WO) sin(4) cos(K,) 

m21 = -COS(I$) sin(KO) 

m.22 = cos(WO) cos(Ka) - sin(WO) sin($) sin(Ka) 

m23 = sin(WO) cos(Ka) + cos(WO) sin($) sin(Ka) 

m31 = sin(@) 

m32 = sin(W0) cos($) 

m33 = cos (Wo) cos (4)) 

The three parameters WO, $I and Ka are the photographic 

rotations about the X, Y and Z axis, respectively. 

The collinearity equations are obtained hy 

dividing the first and second POWS of equation 17 by the 

third row hereby- eliminating the scale factor. 

X - Xt ml1 (X 

-f = 
P - Xc) + ml2 (Y 

P - Yc) + ml3 (Zp - Zc) 

m31 (X 
P 

- Xc) + ~132 (Y 
P 

- Yc) + m33 (Z 
P - Zc) 

yP - y. = m21 (XP - Xc) + m22 (Yp 1 Yc) + m23 (Zp - Zc) 

-f m31 (X 
P - xc> + m32 (Y 

P 
- Yc) + m33 (Z 

P - zc> 

(20) 

_. z . . _I . . . _i ..__, _ . . ..\. -i. ../ _., . . . i , . ...*. -, . . .._ . . . . a.: 
I 
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These equations 'insure that the camera station, image 

and object lie on a straight line. For each point two 

collinearity equations can be written. As there are 

six unknowns (Xc, Yc, Z,, IJO, I$, and Ka) a minimum of 

three noncollinear control points are required for 

their solution. However, a least-squares solution 

permits the use of an unlimited number of control points. 

The solution to the equations is obtained based 

on a set of initial approximations which are adjusted 

iteratively until the adjustments become small. .ih e 

collinearity equations are linearized by the Taylor 

series with the expansion terminated at the first de- 

rivative. 

When the initial approximations of R. a~'e 
J 

close to the actual parameters values (B) 

f(B) 
; af(B) AB = F(Bj) + - 

i=l aBi i 

Letting 

Y = f(B) - f(Bj) 

afrB) Zi = ~ 
i 

for B = Bj 

(21) 

(221 

(23) 

._. - ^ . . . .- . . . . _: _... --‘.I..._.. -. _j I. i _.“. .,. . . - ._ x  , . .  iA 
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then 

-6 
y& C Zi ABi + c 

i=l 

which is a linear form of the collinearity equations. 

The least squares solution in matrix notation is 

B = [ZTZ]-’ ZTY (24) 

The initial approximations of the parameters (Bj) are 

replaced by 

B. 
3+1 

= B. 
J 

+ AB. 
3 (25) 

This iterative process is continued until the solution 

converges, that is, until all AB's are less than some 

prespecified amount. In this space resection problem 

no test is made on the linear adjustments but the solu- 

tion is tcrminatcd when the angular adjustments are 

Less than about two seconds CT arc. 

By knowing the photo orientation, it is pos- 

siblc to determine the position vectors for any point 

on the photograph. The position vector (X) based on 

the state plane co cydinate system axis is related to 

the photographic vector (X ) by the equation 
P 

1 

:, 

. ..-. . _. . . - .I . . ,. ,_-; .-./ .-.. .” ,, -. . . - . ..A. ,. .,ik,, L.1 
, 

,’ ! 

: . : , 

i 
/ :.. ! 

I ‘. 



x = [RMj-'xp (26) 

The ground coordinate of any point on the 

photograph can be computed from the unit position voc- 

tor and the camera station coordinates. 

COMPUTATIONS 

The coordinates of the outline of the dye 

patches were measured with the x-y coordinatograph for 

both fli.ghts. Photo coordinates about the dye patch 

are converted to state plane coordinates and the cen- 

troid and moments of inertia computed from the fbllow- 

ing equations. 

A e & 2/‘i (‘i-1 - ‘i+l) 

j,=l 

X= c 
Xi AAi 

-- 
A 

v= c 
Pi AAi 

A 

Ix = c Xi2 AAi 

(271 

(28) 

(29) 

(SO) 



I - 
Y 

I 
v= 

c 
Yi2 AAi 

c 
XiYi AAi 

(31) 

(32) 

Care must be taken when programming these equations to 

'avoid roundoff error. State plane coordinates are typi- 

cally six to seven digit numbers. 

The rotation angle (u) of the axis to obtain 

the principal axis is given by 

21 
Tan (2a) = i--L 

X 
- I Y 

(33) 

The maximum and minimum moments of inertia about the 

principal axis are computed from 

I, - I 
I = 

max 2 
Y + [p - 'y) + I'_ill/l (33) 

I min = 
I, - I 2 y _ [lx ; 'Y) + I.xy]1'2 

(35) 

The irregular shaped dye patch is replaced 

with an equivalent ellipse that has the same horizontal 

area. In addition, the ratio of Imax to Imin are the 

same for the ellipse as for the dye patch. The principal 

moments of inertia for an ellipse are given by 



/ nb a 3 
I e e 

max= 4 (36) 

(37) 

where a e and be are the major and minor semi axes of an 

equivalent ellipse. If the ratio (IR) of Inlax to Imin 

remain the same for both the dye pa.tch and the ellipse, 

the ratio of the variances are also the same (equations 

15 and 16). 

I .c2 (JX2 In: f!!!!= -= - 
min 'e2 uy2 

(38) 

After computing the area (A) and the ratio of principal 

mome?tS of inertia (IR) for the dye patch, tl-,e semi axes 

of the equivalent ellipse are detei,mined from 

a 
e 

2 = p (IR)‘1/2 

b * = ; (lR)-'/" e 

(391 

(40) 

Equations 15 and 16 provide the relationship 

between the semi axes and the variances of the equivalent 

ellipse. The real dye patch is replaced with..an ellipse 

that has the same'area and the same ratio of transverse 
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to longitudinal variances as the irregt!lar-shaped, 

original patch. The diffusion coefficients are detcr- 

mined from the change in variances by equa: i:l? 10 while 

the current velocity is determined from the change in 

position of the centroid of the dye patch between flights. 

The rcquircd tint interval bctwecn photographic flight:; 

dcpcnds on the accuracy of orientation and positioning, 

but generally 30 to 60 mjnutes is adequate. 

SUMNARY 

This report presented a simplified procedure 

for determining water current velocities and diffusion 

coefficients. Dye drops which form dye patches in the 

receiving water are made from an aircraft. 'ihc changes 

in position and size of the patches arc recorded from 

two flights over the area. The simplified data proces- 

sing procedure requires only that the ground coordinates 

about the dye patches be determined at the time of ca:h 

flight. With an automatic recording coordinatograph ior 

measuring coordinates and a computer for processing the 

data, this technique provides a practical method of cle- 

tcrmining circulation patterns and mixing cliaracteristics 

of iarge aquatic systems. 

: c L .:.r...r.-_. ./,I .“:.-‘<>! : _’ I :. ,_,. -‘ii, : . . .._._. /_\ ..d.k,;i..‘---. .,. :.. _ 1; iAd .,.,_ ..I b. -- --___.....-. i_._ .r, 
* 
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'An, effective waste management  program for the 

preservation of water quality requires. that the fate and. 

effect of waste loadings to be predicted before they are 

allowed to bc discharged. Mathematical mode ls of t!le re- 

.cciving waters can be used.for making these predictions; 

however, they require as input the m ixing and circula- 

tion characteristics of the aquatic system. Remote 

sensing offers a  feasibl.e method OF measuring both the 

diffusion coefficients and the water currents of a  re- 

cciving waters. This information is necessary to assess 

the environmental impact of waste water discharges and 

for industrial plant siting. 
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